Why your scientific paper was accepted?


As one of the executive editors of Solid Earth, one of my main duties is to keep up the journal’s reputation and a high quality of published articles. For a manuscript to be considered as a candidate for publication, it is necessary to fall within the scope of the journal. But, in my opinion, it also needs to show “new science”: innovation in the methods or approaches, sound results and conclusions interesting for a wide audience (which does not need to be simply formed by specialized scientists). Continue reading

Monday paper: Short-term changes in soil Munsell colour value, organic matter content and soil water repellency after a spring grassland fire in Lithuania


Pereira P, Úbeda X, Mataix-Solera J, Oliva M, Novara A: Short-term changes in soil Munsell colour value, organic matter content and soil water repellency after a spring grassland fire in Lithuania. Solid Earth, 5, 209-225. DOI: 10.5194/se-5-209-2014.

Evidence of earthworm activity (indicated with a red circle) in the burned plot 17 days after the fire.
Evidence of earthworm activity in the burned plot 17 days after the fire.

Abstract

Fire is a natural phenomenon with important implications on soil properties. The degree of this impact depends upon fire severity, the ecosystem affected, topography of the burned area and post-fire meteorological conditions. The study of fire effects on soil properties is fundamental to understand the impacts of this disturbance on ecosystems. The aim of this work was to study the short-term effects immediately after the fire (IAF), 2, 5, 7 and 9 months after a low-severity spring boreal grassland fire on soil colour value (assessed with the Munsell colour chart), soil organic matter content (SOM) and soil water repellency (SWR) in Lithuania. Four days after the fire a 400 m2 plot was delineated in an unburned and burned area with the same topographical characteristics. Soil samples were collected at 0–5 cm depth in a 20 m × 20 m grid, with 5 m space between sampling points. In each plot 25 samples were collected (50 each sampling date) for a total of 250 samples for the whole study. SWR was assessed in fine earth (< 2 mm) and sieve fractions of 2–1, 1–0.5, 0.5–0.25 and < 0.25 mm from the 250 soil samples using the water drop penetration time (WDPT) method. The results showed that significant differences were only identified in the burned area. Fire darkened the soil significantly during the entire study period due to the incorporation of ash/charcoal into the topsoil (significant differences were found among plots for all sampling dates). SOM was only significantly different among samples from the unburned area. The comparison between plots revealed that SOM was significantly higher in the first 2 months after the fire in the burned plot, compared to the unburned plot. SWR of the fine earth was significantly different in the burned and unburned plot among all sampling dates. SWR was significantly more severe only IAF and 2 months after the fire. In the unburned area SWR was significantly higher IAF, 2, 5 and 7 months later after than 9 months later. The comparison between plots showed that SWR was more severe in the burned plot during the first 2 months after the fire in relation to the unburned plot. Considering the different sieve fractions studied, in the burned plot SWR was significantly more severe in the first 7 months after the fire in the coarser fractions (2–1 and 1–0.5 mm) and 9 months after in the finer fractions (0.5–0.25 and < 0.25 mm). In relation to the unburned plot, SWR was significantly more severe in the size fractions 2–1 and < 0.25 mm, IAF, 5 and 7 months after the fire than 2 and 9 months later. In the 1–0.5- and 0.5–0.25 mm-size fractions, SWR was significantly higher IAF, 2, 5 and 7 months after the fire than in the last sampling date. Significant differences in SWR were observed among the different sieve fractions in each plot, with exception of 2 and 9 months after the fire in the unburned plot. In most cases the finer fraction (< 0.25 mm) was more water repellent than the others. The comparison between plots for each sieve fraction showed significant differences in all cases IAF, 2 and 5 months after the fire. Seven months after the fire significant differences were only observed in the finer fractions (0.5–0.25 and < 0.25 mm) and after 9 months no significant differences were identified. The correlations between soil Munsell colour value and SOM were negatively significant in the burned and unburned areas. The correlations between Munsell colour value and SWR were only significant in the burned plot IAF, 2 and 7 months after the fire. In the case of the correlations between SOM and SWR, significant differences were only identified IAF and 2 months after the fire. The partial correlations (controlling for the effect of SOM) revealed that SOM had an important influence on the correlation between soil Munsell colour value and SWR in the burned plot IAF, 2 and 7 months after the fire.

Solid Earth

Solid Earth (SE) is an international scientific journal dedicated to the publication and discussion of multidisciplinary research on the composition, structure and dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. More at Solid Earth homepage.

Monday paper: Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain)


León J, Seeger M, Badía D, Peters P, Echevarría T: Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain). Solid Earth, 5, 131-140. DOI: 10.5194/se-5-131-2014.

Extraction of soil blocks for this study.
Extraction of soil blocks for this study.

Abstract

Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The middle Ebro Valley has extreme aridity, which results in a low plant cover and high soil erodibility, especially on gypseous substrates. The aim of this research is to analyze the effects of moderate heating on physical and chemical soil properties, mineralogical composition and susceptibility to splash erosion. Topsoil samples (15 cm depth) were taken in the Remolinos mountain slopes (Ebro Valley, NE Spain) from two soil types: Leptic Gypsisol (LP) in a convex slope and Haplic Gypsisol (GY) in a concave slope. To assess the heating effects on the mineralogy we burned the soils at 105 and 205 °C in an oven and to assess the splash effects we used a rainfall simulator under laboratory conditions using undisturbed topsoil subsamples (0–5 cm depth of Ah horizon). LP soil has lower soil organic matter (SOM) and soil aggregate stability (SAS) and higher gypsum content than GY soil. Gypsum and dolomite are the main minerals (>80%) in the LP soil, while gypsum, dolomite, calcite and quartz have similar proportions in GY soil. Clay minerals (kaolinite and illite) are scarce in both soils. Heating at 105 °C has no effect on soil mineralogy. However, heating to 205 °C transforms gypsum to bassanite, increases significantly the soil salinity (EC) in both soil units (LP and GY) and decreases pH only in GY soil. Despite differences in the content of organic matter and structural stability, both soils show no significant differences (P < 0.01) in the splash erosion rates. The size of pores is reduced by heating, as derived from variations in soil water retention capacity.

Solid Earth

Solid Earth (SE) is an international scientific journal dedicated to the publication and discussion of multidisciplinary research on the composition, structure and dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. More at Solid Earth homepage.

Monday paper: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review


Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., and Gascó, G.: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review, Solid Earth, 5, 65-75, doi:10.5194/se-5-65-2014, 2014.

Soil heavy metal pollution

Due to increased extraction and use by various industries, heavy metals come easily to the environment in various ways. Unlike organic substances, heavy metals can not be degraded and thus accumulate in the environment. As a result, the risk of heavy metals Due to increased extraction and use by various industries, heavy metals come easily to the environment in various ways. Unlike organic substances, heavy metals can not be degraded and thus accumulate in the environment. As a result, the risk of heavy metals entering the trophic chain has increased in recent decades, especially in specific areas of the planet.

As heavy metals enter the trophic chain, soil quality, microorganisms, plants and human health may be affected more and more. Nonessential heavy metals or essential heavy metals (but in high concentrations) are not easily metabolized. Therefore, their concentration in organisms can be very high, as we move higher in the food chain.

Objectives of the paper

One of the main points of contact between heavy metals and the trophic chain is soil. In some cases, the concentration of heavy metals in the soil is high due to volcanic activity or their background concentration in rocks. But large quantities of heavy metals enter the ecosystems from anthropogenic sources such as metallurgy, mining, pesticides, fertilizers and others. However, heavy metal remediation can be extremely expensive and complicated. In this paper, the authors review the state of art of two of the most important techniques currently: phytoremediation (with special attention to the techniques of phytoextraction) and amendments with biochar.

An overview of the potential positive effects attained by combining phytoremediation and biochar in heavy metal pollution remediation. Credit: Paz-Ferreiro et al. (2014).
An overview of the potential positive effects attained by combining phytoremediation and biochar in heavy metal pollution remediation. Credit: Paz-Ferreiro et al. (2014).

Insights

Although the goal of both techniques is similar (remediation), both work differently. On one hand, biochar helps to reduce bioavailability of heavy metals in soil. On the other, phytoremediation can remove large quantities of heavy metals from soil. Both techniques have advantages and disadvantages, strong and weak points. So, an important contribution by the authors is to discuss the potential benefits of the combined use of both techniques and the possible mechanisms involved in the interaction between phytoremediators and biochar.

Solid Earth

Solid Earth (SE) is an international scientific journal dedicated to the publication and discussion of multidisciplinary research on the composition, structure and dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. More at Solid Earth homepage.

Monday paper: Paleosols in the Transantarctic Mountains: indicators of environmental change


Bockheim, J. G. 2013. Paleosols in the Transantarctic Mountains: indicators of environmental change. Solid Earth 4, 451-459. DOI: 10.5194/se-4-451-2013

Abstract

The Transantarctic Mountains (TAMs), a 3500 km long chain that subdivides East Antarctica from West Antarctica, are important for reconstructing the tectonic, glacial, and climatic history of Antarctica. With an ice-free area of 24 200 km2 (50% of the total in Antarctica), the TAMs contain an unusually high proportion of paleosols, including relict and buried soils. The unconsolidated paleosols range from late Quaternary to Miocene in age, the semi-consolidated paleosols are of early Miocene to Oligocene age, and the consolidated paleosols are of Paleozoic age. Paleosols on unconsolidated deposits are emphasized in this study. Examples are given from the McMurdo Dry Valleys (78° S) and two outlet glaciers in the central and southern TAMS, including the Hatherton–Darwin Glacier region (80° S) and the Beardmore Glacier region (85°30′ S). Relict soils constitute 73% of all of the soils examined; 10% of the soils featured burials. About 26% of the soils examined are from the last glaciation (< 117 ka) and have not undergone any apparent change in climate. As an example, paleosols comprise 65% of a mapped portion of central Wright Valley. Paleosols in the TAMs feature recycled ventifacts and buried glacial ice in excess of 8 Ma in age, and volcanic ash of Pliocene to Miocene age has buried some soils. Relict soils are more strongly developed than nearby modern soils and often are dry-frozen and feature sand-wedge casts when ice-cemented permafrost is present. The preservation of paleosols in the TAMs can be attributed to cold-based glaciers that are able to override landscapes while causing minimal disturbance.

Download full article

Solid Earth (SE) is an international scientific journal dedicated to the publication and discussion of multidisciplinary research on the composition, structure and dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. More at Solid Earth hompage.

Monday paper: Grassland fire effect on soil organic carbon reservoirs in a semiarid environment


Novara, A., Gristina, L., Rühl, J., Pasta, S., D’Angelo, G., La Mantia, T., Pereira, P. 2013. Grassland fire effect on soil organic carbon reservoirs in a semiarid environment. Solid Earth 4, 381-385. DOI: 10.5194/se-4-381-2013

Abstract

The aim of this work was to investigate the effect of an experimental fire used for grassland management on soil organic carbon (SOC) stocks. The study was carried out on Hyparrhenia hirta (L.) Stapf (Hh) grassland and Ampelodesmos mauritanicus (Desf.) T. Durand & Schinz (Am) grasslands located in the north of Sicily. Soil samples were collected at 0–5 cm before and after the experimental fire, and SOC was measured. During the grassland fire, soil surface temperature was monitored. Biomass of both grasses was analysed in order to determine dry weight and its chemical composition. The results showed that SOC varied significantly with vegetation type, while it is not affected in the short term by grassland fire. Am grassland stored more SOC compared with Hhgrassland thanks to lower content in the biomass of the labile carbon pool. No significant difference was observed in SOC before and after fire, which could be caused by several factors: first, in both grassland types the measured soil temperature during fire was low due to thin litter layers; second, in a semiarid environment, a higher mineralization rate results in a lower soil carbon labile pool; and third, the SOC stored in the finest soil fractions, physically protected, is not affected by fire.

Download full article

Solid Earth (SE) is an international scientific journal dedicated to the publication and discussion of multidisciplinary research on the composition, structure and dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. More at Solid Earth hompage.

Monday paper: Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards


A. Novara, L. Gristina, F. Guaitoli, A. Santoro, A. Cerdà. 2013. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth, 4, 255-262, doi:10.5194/se-4-255-2013

Abstract

When soil nitrate levels are low, plants suffer nitrogen (N) deficiency but when the levels are excessive, soil nitrates can pollute surface and subsurface waters. Strategies to reduce the nitrate pollution are necessary to reach a sustainable use of resources such as soil, water and plant. Buffer strips and cover crops can contribute to the management of soil nitrates, but little is known of their effectiveness in semiarid vineyards plantations. The research was carried out in the south coast of Sicily (Italy) to evaluate nitrate trends in a vineyard managed both conventionally and using two different cover crops (Triticum durum and Vicia sativacover crop). A 10 m-wide buffer strip was seeded with Lolium perenne at the bottom of the vineyard. Soil nitrate was measured monthly and nitrate movement was monitored by application of a 15N tracer to a narrow strip between the bottom of vineyard and the buffer and non-buffer strips. Lolium perenne biomass yield in the buffer strips and its isotopic nitrogen content were monitored. Vicia sativa cover crop management contributed with an excess of nitrogen, and the soil management determined the nitrogen content at the buffer areas. A 6 m buffer strip reduced the nitrate by 42% with and by 46% with a 9 m buffer strip. Thanks to catch crops, farmers can manage the N content and its distribution into the soil over the year, can reduced fertilizer wastage and reduce N pollution of surface and groundwater.

Download full article

Solid Earth (SE) is an international scientific journal dedicated to the publication and discussion of multidisciplinary research on the composition, structure and dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. More at Solid Earth hompage.